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- Preface
'% ;N

This thesis involved the design of a VIIDL simulator in the C programming language to
be operated in a UNIX environment. The simulator was developed concurrently with the
VHDL analyzer. Together, the VHDIL, analyzer and simulator make a significant contribution

to the AFIT VIIDL Environment (AVE), and provide the academic community with a VIIDL

toolset that operates under the UNIX operating system.

The development of the VIIDI simulator provided an opportunity to ~tudy the area of
software .engineering as it applies to VLSI design. | wish to express my appreciation to those
VHDL group members whose input helped to make the thesis effort the success it was. In

particular, I wish to acknowledge my thesis advisor, Maj Joe DeGroat, for his guidance and
| support throughout the thesis effort. I would also like to thank Capt Randy Bratton, who ['ve
turned to on many occasions with my "C" questions, and CPT Mike Dukes, who helped

navigate me through the VMS operating system, where the commercial VIIDL simulator

resides.

Finally, T would like to thank my wife, Mary, for her encouragement and understanding

throughout the AFIT experience, enduring the hardship of separation and expressing genuine

concern in my thesis progression.
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This thesis effort investigated and implemented a UNIX-based VHDL subsct intcractive

....
.;.;.;

simulator. The simulator was written in the C programming language. The simulator is capable of
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handling many of the VHDL operators, sequential assignment statements, and concurrent statements.

K<

Although the simulator is a subset, the data structures were designed to incorporate the features of the

%y d
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‘

complete VHDL version 7.2.
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1. Introduction -
"
s
K
1.1. Background .
S~
: The Very-High-Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL), :-':-
“ e
~
) developed for the Department of Defense (DoD) by the Air Force Wright Aeronautical Laboratorics ‘;
- b
(AFWAL), is an extremely important vehicle for the development and inscrtion of VHSIC technology JS
g r
L in the 1990’s (Dewey and Gadient, 86). Based on the programming language Ada, VHDL consists of ".'.
: structural building blocks used to design complex VLSI systems. Some of the features of VHDL _;
N S
) include the ability to define memoried and combinatorial elements, create user-defined types, and -
L '_‘-
describe design hierarchies. Although other hardware description languages exist, nonc match :::
' VHDL'’s total capabilitics when working with VLSI and VHSIC circuits (Waxman, 86). The AFIT :\-‘
VHDL Environment (AVE) (Carter er.al, 87) is an advanced prototype UNIX-bascd VIIDL .
'-T-
] programming and design environment that was begun in 1986. The VHDL Simulator, a prototype e
Y kernel of which was developed by MAJ William Lynch (Lynch, 86), is a critical link in the AVE. \':
‘ N
1.2. Problem Statement - o
¥ Universitics are unable to investigate the capabilitics of VHDL due 10 a lack of acceptable :.::-
s -
software tools (analyzers, simulators, etc.). Since many universities use the UNIX operating systcm, :::
»
a VHDL tool set that opcrates under UNIX is necessary if VHDL is to be utilized by the academic ';_.»
{ ) community. A’A'.'
; This project is to develop MAJ Lynch’s VHDL Simulator kernel into a version 7.2 VHDL ::::
subsct Simulator. This VHDL Simulator, in conjunction with the UNIX-based VHDIL. Analyzer ~
\ -
-~ .
s N
L] ‘\ -
] ~
' 1-1 ~

4 ?{'




(Bratton, 87) provides the academic community with the necessary tools to investigate the capabilities
of VHDL. The simulator is written in the C programming language (Kernighan and Ritchie, 78),
capable of running on VAX-11/785 and ELXSI 6400 computers under the AT&T System V and 4.2
and 4.3 bsd UNIX operating systems. Input is in VHDL Intermediate Access (VIA) format, produced
by Capt Randolph Bratton's VHDL Analyzer. Interface with the analyzer is critical, since the
simulator requires specific information from the VHDL description. The simulator’s opecration was

validated, analyzed, and simulation speed was examined.

1.3. Hardware Description Languages

e

v A

1.3.1. Definition and Requirements

'.- s
a
2

Formally, an HDL is defined as a language for describing, documenting, simulating and

-.;A’P
.

synthesizing digital systems with the aid of a computer (Su, 77). The origin of hardware description

*r %
[

languages (HDLs) to describe digital system designs date back to 1939, with Shannon’s work on

Ly

5 4% "_"
o L

switching circuits (Chu, 74). Interest in HDLs has grown, and a myriad of languages has becn

-

N

“
e
“v
-~
-

>

developed to describe computer systems. HDLs allow the designer to express asynchronous

[
x

operations, parallel control, and the architecture of a hardware system in a precise, yet concisce

P
*

o

description (Barbacci, 85).

®e®a
)

An HDL must be able to express the sequence of actions and structure of the components
necucd to implement those actions -- e.g., flip-flops, memory units, ALUSs, and bus structures. It must

be able to describe all of these, whatever its complexity (Su, 77).

1.3.2. Need for HHDLs

Due to the rapid advancement of semiconductor device fabrication technology, the
performance and speed realized from an integrated circuit has incrcased substantially. As circuit
density increased, design details could no longer be conveyed in circuit diagrams (Lipovski, 77).
Although the type number and pin conneclions were represented, circuit diagrams did not reveal
essential design details such as internal functions being performed, indications of legal and illegal

conncctions, and principles of operation (Lipovski, 77). The overwhelming complexity and density

. P Y e - - P e St a e (e (T, e Ty "W’ g "'.'..:._'.."'-"-_'
:’:’f :' S "’q”‘..’q"."._’../-. . s"..'-g'J:- -'/u (AT R R RN ~ _\, >, ‘. \.\\_‘. “~ '\',, AT (‘-"\' .




Pl Cad

of circuit designs necessitated the use of design teams in the development of VLSI technology. The
design team concept, however, was accompanicd with the problem of communicating design

information concisely, accurately, and efficiently (Lynch, 86).

In order to alleviate communication problems, circuit designers incorporated the use of HDLs
into the design process. The need for HDLs was recognized by Yaohan Chu in 1974, When asked,
"Why do we need computer hardware description languages?” Chu offered the following reasons

(Chu, 74):

they serve as a means of communication among design engineers;

they permit precise yet concise descriptions;

they provide documentation;

o they are amenable to simulation on a computer;

they aid greatly in computer aided design (CAD).

By utilizing HDLs, hardware design engineers have a means of communicating their designs in
a precise, self-documenting language. These features contribute to hardware design reusability and
maintainability in digital systems. When HDLs are simulated on a computer and utilized in a CAD

environment, both design time and design costs are reduced substantially.

A hardware simulator permits its designer to simulate, usually before construction, hardware
designs (Lynch, 86). The designer can create a software model for a hardware system, excreisc the
model with a sct of input stimuli, and observe the output. Logic simulation is especially valuable for

VHSIC designs since design errors are very costly and breadboarding is impractical (d' Abreu, 85).

1.3.3. Problems with HDLs

The recognition of the ability of HDLs has led to the proliferation of weak, ineffectual
languages. When a simulator was written, the designer felt entitled to write his own HDL; he felt that
it would be easier to design a new HDL than to adapt existing ones 1o his application (Lipovski, 77).
In describing the state of HDLs, Lipovski says, "We scem 1o be confounded in our own Tower of

Babel -- everybody is talking a different language but nobody is communicating.” (Lipovski, 77). In
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e a survey of HDLs, Su concluded that although many languages exist, none have been widely utilized f.:':-
l "&':: to design, describe, or document digital systems (Su, 74).
; The problem has been that although HDLs existed for specific applications, none were
E satisfactory over the range required for a large hardware design project (Lynch, 86). In 1977, Stephen
i Su suggested the use of a common HDL for circuit designers (Barbacci, 85). In 1981, the Department
, of Defense acknowledged the need for an HDL for Very-High-Speed Integrated Circuits (VHSIC) =5
i class designs (Shahdad, 85). The DoD hoped to establish the VHSIC Hardware Description Language ?
(VHDL) as the standard language for VHSIC designs. :.':
!jf
1.4. VIISIC Hardware Description Language (VHIDL) f-‘_-"_ ,
1.4.1. Background /-:'.r
'a
In the 1970s, the DoD initiated the development of the Ada programming language in rcaction ":
1o the crisis in software development. Requirements for the Ada programming language were that it :E
incorporate software enginecring concepts such as structured programming, information hiding, and ‘:\
‘.’ data abstraction (Booch, 87). '.']
AN
When analyzing the problem of how to effectively communicate information on VHSIC :\::E
designs consisting of over 250,000 transistors, the DoD found the basic constructs implemented in ::
Ada were consistent with the requirements for a new HDL (Lynch, 86). ’_:.:_‘_J
:.‘_-:'.j:
1.4.2. Development and Definition of VHDL ::
In 1981, the Institute for Defense Analyses (IDA) was tasked with the requirements analysis for . -
the VHSIC Hardware Description Language (Aylor, 86). In the process of developing VHDL, ll;..:'_
existing HDLs and their environments were analyzed, extracting the major advantages of each; this ;'.'-:;':-
insured that no existing HDL capabilities were overlooked in developing VHDL (Aylor, 86). In .: :

1982, the VHDL program organization was formulated; in 1983, the VHDL program was launched

a0
P
-

Py

when the team of Intermetrics, IBM, and Texas Instruments was awarded the contract to design and

4
YN
o e

aA_a »

implement the VHDL support environment software (Dewey, 86; Gilman, 86). Intermetrics, the
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o

N AN S

prime contractor for the program, was tasked with designing the language and establishing the

support environment architecture (Gilman, 86).

1.4.3. Goals and Attributes of VHHDL

The specific goals of VHDL are to reduce circuit design time and insert VHSIC technology into
military systems (Dcwey, 86). More generally, VHDL strives to mect the HDL goals noted carlier
(precise communication, documentation, simulation, and CAD applications). The primary goal of the
DoD is to establish VHDL as a standard design automation interface tool and documentation agent
(Dewey, 86). This would greatly simplify complex system design and facititate VHSIC inscrtion into

electronic systems.

1.4.4. VIIDL in a VMS Environment

The VHDL tool sct developed by Intermctrics was written in Ada, to be operated in a VAX-
VMS environment. The Air Force Institute of Technology (AFIT) was selected as a site for beta-
testing the VMS-basecd VHDL tools. The VHDL Analyzer and Simulator were ported onto AFIT’s
VMS VAX-11/785 (Carter, 87). The installation procedure was complicated duc to inadequate
installation instructions and some file protection problems. Furthermore, it was later discovered that
the software contained version dependencics that interfered with the proper operation of the VHIDL

tools when later relcasces were installed (Carter, 87).

1.4.5. AFIT VHDL Environment (AVE)

In recognition of the deficiencies of the Ada/VMS-based VHDL tool set implementation, the
AFIT VHDL environment (AVE) was established in 1986. The AVE is a prototype UNIX-based
VHDL programming and design environment in which UNIX-based software tools are developed in
the C programming language. The key attribute of software developed in C is its portability; that is,
the capability of installing it on diffcrent UNIX-based computer systems with little or no
modifications to the software. In 1986 AFIT thesis efforts, a prototypc VHDL Analyzer
(Frauenfelder, 86) and a prototype VHDL Simulitor (Lynch, 86) were developed. The validation

benchmarks of these prototype versions offer proofl of the UNTX-based design concept (Frauenfelder,
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86; Lynch, 86). A UNIX-based environment is favored because it is the operating system utilized by

most universities, and because of the inherent portability of C software.

To facilitate the insertion of VHSIC technology into university programs and government

systems, the prototype Analyzer and Simulator had to be developed into VHDL CAD 100ls.

1.5. Assumptions

Completion of this thesis assumes a mapping of source code to a VHDL intermediate format. A

working analyzer is not essential, as the intermediate files could be synthesized using a text cditor if

necessary.

1.6. Materials

e VHDL Users’ Guide and Refcrence Manual (Intermetrics, 85a, Intermetrics, 85¢)
e C Reference (Kernighan and Ritchie, 78)

e A UNIX-based computer with a C compiler; (An ELXSI 6400 super-minicomputer and

Sun-3 workstation was uscd to meet this requirement.)

1.7. Approach

The overall design philosophy in this research effort was to incrementally implement language
features of VHDL into the simulator. Since the signal assignment was considered the most
fundamental bchavioral statement, it was the first to be implemented. As features of the language
were implemented, tested, and validated for the Analyzer and Simulator, Beta versions were released.
Successive Beta versions incorporated additional language features, always maintaining end-to-end

throughput from VIIDL source to simulation output.

In the next chapter, the system design philosophy is discussed; the features of the simulator are
introduced, and the design approach and methodology are described, and the notion of a pre-compiled
simulator is justified. Chapter 3 is devoted to a discussion of the steps involved in creating
compilable C code from the intermediate form, and an explanation of data structures used for

simulation. The chapter is concluded by conceptually cxercising a simulation for a VHDI.
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description, showing the intermediate results in the simulation process. In chapter 4, the simulator is

»
.-

analyzed by listing the features of VHDL that were implemented in the simulator, the execution times 4
for various phases in the simulation, size of files involved, and a comparison of simulation reports

obtained from the VMS version and the UNIX version. Finally, in chapter 5, recommendations for

AKIASS
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future research in the area of VHDL simulation is discussed.
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2. System Design

For the subset simulator to be dcemed complete, it must mect performance requirements
defined and described in this chapter. The performance requirements state the subset of the language
the simulator must be capable of simulating, the simulator’s user interface, its operating environment,

and execution time and file size requirements.

2.1. Objectives

The primary objective of this research effort was 1o develop a subsct VHDL simulator in the C
programming language capable of running under UNIX; additionally, the simulator should be fast,
have modest disk space requirements, and be easy to use. The simulator must read an intermediate

form of VHDL and an optional input vector file.

2.2. VHDL Subset Simulator
For the UNIX-based simulator to be considered complete, it must meet the following criteria:

o It should correctly simulate the signal assignment, enable, disable, assertion, if, and case
sequential statements; and the process, concurrent assertion, conditional signal
assignment, and selected signal assignment concurrent statements, as described in the

Language Refcrence Manual (Intermetrics, 85a).

o The simulator must have a user interface that includes an interactive mode which allow
the user to set simulation breakpoints and view signal values or change signal valucs at
brcakpoints. The simulator must allow the user to specify an input stimuli file, allowing

the user to provide input vectors for signals.

¢ It should complete the simulation, from intermediate form 10 output report generation, in
less CPU time than its VMS-based counterpart. The disk space required for simulation

under UNIX must also be less than that required by the VMS version.

Obuaining objective comparisons for exccution time may be difficult due to differences in

CPUs on available VMS and UNIX machines. Disk space, however, is absolute, and can be casily
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compared. From a software engineering perspective, the simulator must adhere to the principles of

| o
’,
7k
00

structured programming (modularity, module independence, ctc.) and proper code documentation

(Pressman, 87).

ol

r

These software engincering principles are fully supported in the design of the simulator. The

overall simulator is divided into two packages, the Build package and the Simulate package, each

T LY,

performing a distinct operation. Each of these packages is implemented by decomposition into
hierarchically designed functions. Each function is documented with a header which describes what

the function does, and explains the purpose of the parameters passed and local variables.

2.3. YHDL Intermediate Form

Ty ey ey ¢ . RN.TE. ST 1 7 V. ey » woe e T AR NN
. - L' '- v I 1] £
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VHDL Intermediate Access (VIA), produced by Capt Bratton’s VHDL Analyzer (Bratton, 87), E
serves as the intermediate form for the simulator, VIA provides the complete design description in ;:-'
the form of a syntax tree. Simulation from VIA is more manageable since the VIIDL source has been E"
syntactically and semantically verified, and has been rcorganized into a tree structure that is easily f.‘-
) parscd by the simulator. Additionally, many of the control structures (if-then-clse, case, loop) are :IE‘
‘-. easily mapped from the syntax tree format of VIA to C code. ';1
2.4. Interactive Capability :,,
o™
The simulator must provide interactive features that allow the user to provide input stimuli, sct )
breakpoints, view signal values, change signal valucs, and terminate the simulation. Each of these :::_
features are described below., f'::
AN
24.1. Input Vector File ',

The simulator must provide the user with the ability to change the values of input stimuli. The o

-y e
R
L
1 s

input vector file permits the user to specify signals that are to be set, the time they are to be affected,

(Y

and the value the signal will assume. For example, the user should be able to specify that signal A is

.;f"”lﬁ

sct to "0 at time Ons, '1° at time Sns, "0’ at time 15ns, etc. The input vector file is optional, and the

I~J- A

uscr can specify any number of vectors in the file.
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. 2.4.2. Breakpoints ‘n
"‘,\} Q,f
N Al
The user should be able to set breakpoints in the simulation. When a breakpoint is specificd, the ®
S
simulation proceeds until the specified time is reached. At that time simulation is suspended, .\:‘_ ,
Py
. . A . . . Lo SO
allowing the uscr the option of viewing intermediate values, altering valucs, or terminating the }..'
RS
simulation. S
% ¢
. . \.‘:\ ¢
2.4.3. View Signal Values O
ROV
This function permits the user to view intermediate signal values during the course of a :—: X
simulation. Following a breakpoint selection, the user can specify which signal values should be NS
. N
o
displayed. The signal values will be displayed to the console, and the user can display more signal \,-:_:
AN
o
. . . . . . Y%
values, continue the simulation, or terminate the simulation. \:'.
A
. . I‘
2.4.4. Change Signal Values e
Y
This function permits the user to alter the course of a simulation by forcing changes on onc or - :'
AW
-
more signal values by specifying a signal name followed by the value it is to assume. The user can Y

®
ok

repeat this function for as many signals as desired. - \_
e
N
2.4.5. Terminate Simulation i
_\;’u
This feature allows the user to abort a simulation without further processing. .‘v
-
o
\:_-.
2.5. Implementation Requirements N
o
-J‘
The simulator is implemented in the C programming language, to be operated under the AT&T o« nq
®
System V and UNIX bsd 4.3 operating system on an ELXS! 6100, DEC VAX 11/785, and a SUN g“ ‘
workstation. RS
. S
2.6. Performance Requirements °
RGN
Since the primary objective of the VHDL simulator is to simulate VHSIC class circuits, its QE‘
‘ s
memory requircments and execution speed were given particular attention when designing the data r-;:.- )
N
structures. Figure 2-1 shows the difference between the VHSIC class design and the less complex ..’
EASA
A
.:.‘.l *
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Y
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o
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) designs solved by Engineering Analysis Simulation Systems (Intermetrics, 84). The larger number of

| .'\
I‘\g" gates being simulated in VHSIC class designs (up to 100K) usually require vast amounts of memory
and have very long exccution times on large minicomputers and mainframe computers. The vast
memory requirements and long execution times stifle productivity and especially impact users in a
timesharing environment.
Number of
Pauterns
” —
20k VHSIC
Design Verification
Simulation
Systems
10k —
Engincering Analysis
60 Simulation Systems
"
_ Number
T T 7 of Gates
S0k 100k
Figure 2-1. Complexity of VHSIC Class Designs.
The event-driven methodology used in this simulator is designed to help alleviate the vast
memory requirements and long execution times inherent in VHSIC class simulation, Figure 2-2
shows the dilference in efficiency between interpretive and precompiled simulators.  Interpretive
simulators are typically more efficient to sct up, but less efficient as the number of test patterns
increases into the VHSIC realin of designs (Intermetrics, 84).
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Figure 2-2. Precompiled vs. Interpretive Simulator Comparison. .
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2.7. Simulation Methodology

2.7.1. Approach

The two classes of simulators are compiler-driven and table-driven event-directed (or table-
driven). Earlicr simulators were compiler-driven, while the more modern ones arc cvent-driven

(d’Abreu, 85).

In digital circuits, usually only 10 to 15 percent of the circuit is active at any point in time
(d’ Abreu, 85). This makes it inefficient to simulate all elements. Instead, an event-driven simulator
is based on changes in the state of signals. When a signal is scheduled to change value at some future
time, both it's projected value and its scheduled time are maintained in linked structures called event

lists and time queues (d’ Abreu, 85).

This VHDL simulator is an event-driven simulator that maintains both a time queue and event

lists. The data structures used to meet this requirement are described in detail in the next chapier.
2.7.2. Overall System Design

Q‘ In the sysiem design phase, an approach similar to the Structured Analysis and Design
Technique (SADT) (Pressman, 87) was used to develop the software system. Using SADT-like
diagrams, the system could be vicwed from a very high level of abstraction, exposing data
transformation and data flow. SADT-like diagrams were prepared for the overall system, the Build
package and the Simulator package. At these high levels of abstraction, SADTs proved helpful in
percciving the intcraction between the problem space and the solution space. At lower levels in the
design, SADT-like diagrams were not as effective at describing and documenting modulces; instcad

algorithmic descriptions were used.
The overall simulation execution flow is described below:
e Read VIA from file into interal structure (array).
e Parse the symbol table section of VIA, creating symbol table in memory.

e Parsc the operation table section of VIA, starting from the highest level block statement.

As the operation table is parsed, files containing exccutable C code are generated.
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abstraction is depicted in Figure 2-3. The simulator oblains control information from the command :'-f.
l-".
line, via command line options, and from user responses, when operated in the interactive mode. The :‘-';
Pl
simulator obtains input from VIA, which describes the VHDL description, and from an optional
vector file. Based on the inputs and control specifications, an output file that describes the behavior ::'_-:_
of the VHDL description is produced. If there were any errors in the input or in the user specified e
control, an appropriate message is displayed to the terminal. o
®
e
Command Line Interactive Responses e
»
(S}
\:,\
~ Lt
AEN
NN
LN
.\ - 3
VIA Output )
; Tl .
VHDL -
Simulator
Vector Error T
v Msgs e
.‘,;.
]
::_:
PP
NG
2
'.:\
Figure 2-3. System Level SADT Diagram. '.4‘\
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e The C modules just created are compiled and linked with the kernel of the simulator and Z:-'_:_
the run-time library. C%
»
. : -
o The simulator is executed. NN
'1’\ :
. oY
e Tailored reports can be generated. N
U
'’

The SADT-like diagram used to describe and document the simulator at the highest level of

’.




2.7.3. Build Package

The Build package reads VIA and creates the necessary C code for creating the static data
structures and functions necessary for simulation. The SADT-like diagram used to design the Build
package of the simulator is depicted in Figure 2-4.  The user must specify the name of the VIA file
on the command line. If the file does not exist, an appropriatc message is displayed to the terminal,

otherwise the specified VIA file is read, and C code that modcls the VHDL description is generated.

Command Interactive
Linc Responscs
C code modelling
VHDL description
Build
ui
VIA * Package
———
Error

Msgs
@

Figure 2-4. Build Package SADT Diagram.
The Build package creates the static data structures and the behavioral functions by performing
the following:
¢ Recad VIA file into an internal structure (array).
o Parse the symbol table section of VIA for all signals and variables declared.

o Parse the operation table section of VIA, starting from the highest level block statement.

As the operation table is parsed, the C functions describing the description’s behavior are

incrementally gencrated.
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In the next chapter, the sequence of steps described above are discussed in more detail, and ',-::
.)\. "*_ 4
}{:* illustrated by applying algorithm for the Build package to a VHDL description. The structure of the AN
’
operation table is illustrated in the example, as well as the content of the C files gencrated. N
3
Y
2.7.4. Simulate Package ‘
A
h
The Simulate package begins by compiling the C function(s) created in the Build package and L_
.':x
linking them with the kemel of the simulator. All information from VIA is contained in the C
2T
functions, so the Simulate package does not access VIA. '.::\
i
The design of the Simulate package began by describing the data flow and control in a SADT- '
,I
like diagram, which is depicted in Figure 2-5. When executing the Simulate package, the user may '}.::
SN
o o
specify the name of an output file on the command line, otherwisc a default name is used. During the -
o
o
course of a simulation, the user has the opportunity 10 set breakpoints, view intermediate results, or )
A" A
change signal values during the course of the simulation. When the Simulate package begins '
“
exccution, the C code that models the VHDL description is compiled and linked with the kernel of the ~
]
_.I
‘, simulator. The simulator is executed, and an output file is created. If there were any errors in the .-"‘
| ] ‘e
simulation, the user will be notified by appropriate messages to the terminal. .::.
:::. '
N
'_:J" .
e
Command Interactive -';- N
Line Responses o
C code modelling g
VHDL Description Output - v
File )
— . o ‘.._‘.'.
Simulate o
Package Error o
—— ] p—— A
Msgs L
Vector file .g /
’
O
g
hf.‘
N,
. . . v’
Figure 2-5. Simulate Package SADT Diagram. ':'; 3
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The Simulate package is then executed, exercising the following cycle adapted from the VHDL

tutorial:

1. If the next vector time is cqual to the current simulation time, the value of
each signal in the input vector is read sequentially. If the value of a signal in
the input vector is different from the current value of the signal, the signal
value is updated instantancously and all processes sensitive to that vector are
marked for execution. If the value of the signal in the input vector is the
same as the current value of the signal, nothing happens. Signal valucs in the

input vector are read and evaluated until the input vector has been exhausted.

2. 1f the current simulation time is the same as the first record in the time
queue, all transactions in the event list for this time are evaluated. If the
scheduled value is different from the current value of the signal, all
processes sensitive to that signal arc marked for exccution. If the scheduled
signal value is the same as the current value of the signal, nothing happens.
Transactions in the event list for the current time are evaluated until the

event list is empty.

3. All marked processes in the process table arc cxccuted, possibly posting

transactions (o signals’ projected output waveforms,

4. Time advances. The global simulation time advances until the user

specified termination time is reached or the time queue is empty.

2-10
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3. Detailed Design

In the previous chapter, the requirements for the simulator were described, followed by a
system level view of the Build and Simulate packages’ functionality. In this chapter, the design of
the Build and Simulate packages will be discussed in more detail with examples where appropriate;

unique implementations of algorithms and data structures are emphasized in this discussion.

3.1. Build Package

The philosophy of the Build package is 1o read the intermediate form once and create C code
that models the behavior of the VHDL description, as well as declarations and assignments for the
static data structures in the simulation. The C code created in the Build package can then be

compiled and linked with a simulator kernel and runtime library for exccution.

The Build package begins by reading the VIA file into an array. As mentioned earlicr, VIA is
maintained as serics of records that can be conceptually linked, forming a binary tree consisting of
Sirst and next nodes. When viewed as an array of records, each record has a first and a next ficld,
which are the indices of other records in the array. The records in the array can alternately be viewed
as nodes of a tree, where the first and next fields are viewed as pointers to other nodes. TFor a

thorough explanation of the VIA format and contents, the reader is encouraged to read Bratton’s work

on the VHDL analyzer (Bration, 87).

The tree is recursively traversed and evaluated, starting from the highest level BLOCK
statement.  As nodes arc encountered, they are evaluated, and the C code modeling the VHDL

description is incrementally generated.

The philosophy of the Build package provides runtime efficicncy because VIA is read from a
file into an intcmal representation, which is traversed in one pass, building C code that models the
behavior of the VHDL description represented in VIA. By creating C code, elements in the VHDL

description  (signals, drivers, wvariables, etc) can be represented as  discrete  clements.
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If the elements in the VHDL description were not represented as discrete records, they would have o
be represented in a linked list of records, or as an array of records. Implementing the data structure as
a linked list would increase search times, while an array implementation would not be memory

efficient.

3.2. Build Package Example

In this section, the execution of the Build Package is examined for the example of a three input
XOR signal assignment statement. First the VHDL description is presented, followed by the VIA file
generated after running the analyzer. The VIA format is presented in its untouched form, a formatted
form, and the equivalent operation table in a visual tree structure. Finally, the C code gencerated by
the Build package, and a pictorial representation of the static data structures needed for the simulator

are discussed.
3.2.1. YHDL Description

The VHDL description for the three input XOR signal assignment statcment is mercly a
process statement containing a sequential signal assignment statcment. The VHDL description used

in this example is given below.

entity XOR3

(X,Y: in BIT; -- one-bit addends
2: in BIT; -- carry in
F: out BIT) ~- one-bit sum

is

end XOR3;

architecture DATA FLOW_IMPL of XOR3 is
BLOCK_1: block
begin
process (X, Y, Z)
begin
F <= X xor Y xor Z after 41 ns;
end process;

end block BLOCK 1;

end DATA FLOW IMPL;
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3.2.2. VIA Representation

Depicted below is the untouched VIA file output by the analyzer. The first four entrics in VIA
indicate how many design units, symbol table, operation table, and string table entrics there are in the
VHDL description. In this example, there is 1 string table entry, 32 symbol iable entrics, 19

opcration table entries, and 3 design units.

32 19 3
_ANY 0000 -1 -1-1-1-1
STANDARD 3 4 0 1 -1 -1 -1 -1 -1

INTEGER 2 1
CHARACTER 2
BIT 2 2 0 1
BOOLEAN 2 2
FALSE 1 3 0

OO s WO

11 ERROR 1 3 0 1
12 FAILURE 1 3 0

13 NS 1 3

01

". 14 TIME 2 5 0
: 15 Us 1301
01

20 REAL 2 6 0

TRUE 1 3 0151

SEVERITY_ LEVEL 2

NOTE 1 3 0180

10 WARNING 1 3 01 81 -1 -1 11
8
1
1

-2147483648 2147483647 2 -1 -1
128 0 127 -1 -1
-1 -1

H oNMNMO
nmnEHE oo

-1 -1 -1
201403-1-1
-1 -1 10

2 -1 -1 12
8 3 -1 -1 -1
1 -1 -1 15
1 0 2147483647 8 13 -1
14 1000 -1 -1 16
14 1000000 -1 -1 17
4 1000000000 -1 -1 -1
0 -1 -1 19
1 -1 -1 -1
1 -2147483648 2147483647 20 -1 -1

21 NATURAL 2 1 0 1 0 2147483647 2 -1 -1

22 POSITIVE 2
23 STRING 2 3
24 BIT_VECTOR
25 XOR3 31 0
26 Y1 19 25

27 X119 25
28 2119 25
29 F 1117 25

1 011 2147483647 2 -1 -1
0122310 -1
230121400 -1
25 29 -1 -1 -1 -1
4 -1 -1 -1 27
4 -1 -1 -1 -1
4 -1 -1 -1 26
4 -1 -1 -1 28

30 DATA FLOW_IMPL 3 2 0 30 25 18 -1 -1 -1
31 BLOCK_ 11 4 0 31 18 -1 -1 -1 -1
001 -1-1-1-1-1

16
17
17
17

19
19
19

@ ~J s WN
O O W WWwWwWw

-157 -1 -1
-1 4 27 4 -1
-1 4 26 -1 -1
-1 4 28 3 -1

$17 -1 -1 2 15 -1

-1 4 29 14 -1
-1 4 27 8 -1
-1 4 26 -1 -1
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9 367 19 -1 4 7 10 -1

«'e
I

Y B 10 9 19 -1 4 28 -1 -1 N
! 'ﬂfv 11 367 19 -1 4 9 -1 -1 o
12 11 19 -1 2 -1 -1 41
13 291 19 -1 2 12 11 -1 >
A 14 13 19 -1 -1 13 -1 -1 o
:- 15 419 -1 -1 6 -1 -1 A
N 16 345 20 -1 -1 5 -1 -1 s
. 17 12 22 -1 -1 1 16 -1 "
* 18 301 22 31 -1 17 -1 -1
>
4
N 3.2.3. Formatted VIA 3
. o
The VIA format presented in the previous section is not particularly easy to read. Thercfore, a .
-
: utility called fmtvia, for format VIA, was developed with the analyzer software package (Bratton, <o
v S
i 87). The fmtvia program reads a VIA file and produces a formatted VIA file with descriptive labels \
o
? - . . A
for each of the fields, and replaces numbered field descriptions with symbolic names. When the VIA
.
) file of the previous section was run through fmtvia, the following output was produced. The listing ?
X below contains the same information as the VIA file of the previous section, just in a more readable
. - format.
§o
e
AFIT VHDL VIA-to-Text Utility Revision: 2.0
string size = 1; symbol table entries = 32
op table entries = 19; design units = 3
0 name=__ ANY  scope_ref=0 ANY CLASS ANY UNIT
. 1 name=STANDARD scope_ref=1 design_unit package
0 package_declarations=~1
’ 2 name=INTEGER scope_ref=1 type integer range min=-2147483648
max=2147483647 typeref=2
3 name=CHARACTER scope_ref=1 type enumeration # of const=128
first=0 last=127
4 name=BIT scope_ref=1 type enumeration #_of const=2 first=0 last=1
5 name=BOOLEAN scope_ref=1 type enumeration # of const=2 first=(0
last=1
6 name=FALSE scope_ref=1 object constant typeref=5 value=0
initialize=-1 next=7
7 name=TRUE scope_ref=1 object constant typeref=5 value=1
initialize=-1 next=~1
. 8 name=SEVERITY_ LEVEL scope_ref=1 type enumeration # of const=4
# first=0 last=3
o 9 name=NOTE scope ref=1 object constant typeref=8 value=0
j initialize=-1 next=10
'y

10 name=WARNING scope_ref=1 object constant typercf=8 valuc=1
initialize=-1 next=11

. e - R . i N R A AT S



! 14 name=TIME scope_ref=1 type physical # of units=8 min=0 ;}
) max=2147483647 baseref=13 .
15 name=US scope_ref=1 object constant typeref=14 value=1000 zw
initialize=-1 next=16 t
N 16 name=MS scope_ref=1 object constant typeref=14 ;j
. value=1000000 initialize=-1 next=17 o
. 17 name=S scope_ref=1 object constant typeref=14 N
g value=1000000000 initialize=-1 next=-1 p
' 18 name=0 scope_ref=1 object constant typeref=4 value=0 Ny
initialize=-1 next=19 ,
19 name=1 scope_ref=1 object constant typeref=4 value=1 «
; initialize=-1 next=-1 X
~ 20 name=REAL scope_ref=1 type real range min=-2147483648
A max=2147483647 typeref=20
* 21 name=NATURAL scope_ref=1 type integer range min=0
Y max=2147483647 typeref=2
| 22 name=POSITIVE scope_ref=1 type integer range min=l l
- max=2147483647 typeref=2
. 23 name=STRING scope_ref=1 type array indexref=22
3 elementref=3 lo bound=1 hi_bound=<>
. 24 name=BIT_VECTOR scope_ref=1 type array indexref=21
. . elementref=4 lo_bound=0 hi_bound=<>
‘L. 25 name=XOR3 scope_ref=25 design_unit interface port=29
3 > generic=-1 interface_declarations=~1 directives=-1
X 26 name=Y scope_ref=25 object signal typeref=4
. initialize=-1 next=27 other_info=( port mode=in )
\ 27 name=X scope_ref=25 object signal typeref=4
initialize=-1 next=-1 other_info=( port mode=in )
28 name=Z scope_ref=25 object signal typeref=4 ,
initialize=-1 next=26 other_info=( port mode=in )
29 name=F scope_ref=25 object signal typeref=4
1 initialize=-1 next=28 other_info=( port mode=out )
o 30 name=DATA_FLOW_IMPL scope_ref=30 design_unit architecture

f Y

P

>

~

N

“a 11 name=ERROR scope_ref=1 object constant typeref=8 value=2 :}
.\ initialize=-1 next=12 L
N 12 name=FAILURE scope_ref=1 object constant typeref=8 value=3 r—

initialize=-1 next=-1
13 name=NS scope_ref=1 object constant typeref=14 value=1
initialize=-1 next=15

LIS
)

)

interface=25 block=18

31 name=BLOCK_1 scope_ref=31 object label first stmt=18 next=-1

0 NO_OP line=1 label=-1 type=-1 first=-1 next=-1 !
1 SYM REF line=16 label=-1 type=5 symref=7(TRUE) next=-1 .
2 SYM_REF line=17 label=-1 type=4 symref=27(X) next=4

3 SYM_REF line=17 label=-1 type=4 symref=26(Y) next=-1

4 SYM_REF line=17 label=-1 type=4 symref=28(Z) next=3 R
5 SENSITIVITY LIST line=17 label=-1 type=-1 first=2 next=15 o
6 SYM REF line=19 label=-1 type=4 symref=29(F) next=14 y
7 SYM_REF line=19 label=-1 type=4 symref=27(X) next=8 u
8 SYM_REF line=19 label=-1 type=4 symref=26(Y) next=-1 2
9 XOR line=19 label=-1 type=4 first=7 next=10 -

v v

1

10 SYM_KREF line=19 label=-1 type=4 symref=28(Z) next=-1
11 XOR line=19 label=-1 type=4 first=9 next=-1

12 I_VALUE line=19 label=-1 type=2 value=4]1 next=-1

13 AFTER line=19 label=-1 type=2 first=12 next=11

"l'l‘
o
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»

WAVE line=19 label=-1 type=-1 first=13 next=-1
SIG_ASSIGN line=19 label=-1 type=-1 first=6 next=-1
PROCESS line=20 label=-1 type=-1 first=5 next=-1
GUARD line=22 label=-1 type=-1 first=1 next=16¢
BLOCK line=22 label=31 type=-1 first=17 next=-1

f(fl""(l

T e e e

v

3.2.4. Operation Table Tree

Far At

The simulator reads the unformatted VIA from disk. After reading the header information, the

g

+ B
A A e P ]

simulator knows how many design units, symbol table entrics, operation table entrics, and string table

entries to expect. The symbol table and operation table are read, line by line, into an array; the string

table cntries are read, character by character, into a string. Initially, the symbol table is used for

A

signal and variable declaration. Once all signals and variables have been declared, the symbol table

is used indirectly by the operation table when signals appear in the VHDL description. Figure 3-1

»\IJ.

shows the operation table visualized as a tree. The operation table tree provides the same information

LS YA )

found in the operation table section of VIA. Each node in the operation table is labeled with the node

AL YA

number and name of the operation table entry. Note the SYM_REF (symbol reference) nodes, which

o 2 s

refer back to the symbol table.

For the three input XOR VHDL description, there is a single BLOCK statcment (node 18),
which consists of a single process statement (node 16). The process has a sensitivity list of the
symbols X, Y, Z, represented by nodes 2, 3, and 4 respectively. Inside the process statement there is
a signal assignment statement (SIG_ASSIGN, node 15), which assigns to symbol F (node 6:

SYM_REF) the waveform described in the subtree with root at node 14 (WAVE). The AFTER node

.

* i " lll.
Gt A 0

specifics after what time the signal F is to take on the expression pointed to by AFTER’s first pointer,

in this case, a three input XOR,
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“n 3.2.5. C Functions
ooy

The complete C code that is generated by from the above VHDL description and VIA is listed

here.

#include <stdio.h>

#include "sim stru.h”

int *s27 pl;

int *s28 pl:

int *s26_pl;

int s26_sens proc([2];

int s27_sens_proc(2];

int s28 sens proc(2];

int 529_sens_proc[l];

Driver *pdl(1]; int *psl[3);

sim_initialize(sig_array, pt)
Signal *sig _arrayl(}:
Process_table_item pt[];
{
Signal *Newsig();
Signal *s26;
Signal *s27;
. Signal *s28;
i. Signal *s29;
v char *strsave();
extern int s26_sens_proc(];
extern int s27_sens proc(];
extern int s28_sens_procl];
extern int s29_sens_proc(];

int 1i;
Driver *Newdrv();
int pl6();

extern Driver *pdl[]; extern
Driver *d29;
/* end of declarations */

/* create signals */
826 = Newsig():; s26->signame
s27 = Newsig(); s27->signame

828 = Newsig(); s28->signame =

s29 Newsig(); s29->signame
sig_array[0] = s529;
sig_array[l] = s27;

sig_array[2] = s526; -
sig_array(3] = s28; _n
/* declaring drivers */ S
d29 = Newdrv():; d29->sig ptr = s29; $29->drv ptr = d29; R
— . ..'
o
s26_sens_proc(0] = 0; /* initially, no sensitive processes 4/ Gt
s27_sens_proc[0] = 0; b
s o
2N
3-8 %
»
N
e
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int *psl|[];

= strsave("Y");

= strsave ("X"); "L
strsave ("z"); -
= strsave("F"); f{
S
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T

s28_sens_proc(0]
s29_sens_proc[0]
s26->sens_proc
s27->sens_proc
s28->sens_proc
s29->sens_proc
pt(l).proc_ptr =

= 0;
0:
526_sens_proc;
s27_sens_proc;
828 sens_proc;
s29_sens_proc;
plé;

I

/* found a sensitivity list for a process */

s27_sens_proc[++s27_sens_proc(0]] =

s27_pl

528 pl

1;

&s27_sens_proc(s27_sens proc[0]];
s28_sens_proc[++328_sens_proc([0]]
&328 sens_proc(s28_sens _proc(0});
s26_sens_proc(++s26_sens_proc(0]] =
&326_sens_proc[s26_sens_proc([0]];

1;

1;

s26->cur_val;

826 _pl =
pdl{0]) = d4d29;
psl[0] = s827->cur_val;
psl[l] =
psl{2] =

s28->cur_val;
/* process table filling of driver & signal list

*/

pt [0] .next = &pt (0]

for(i=1; i<2;

i++)

pt{i] .next = NULL;

pt[1l].dlist = pdl;
} /* end sim _initialize()

ptll1l).slist
*/

psl;

/* VHDL Process(es) modelled in C code */

pl6(dlist,slist)
Driver *dlist([]:
int *slist(}:

. {

/* process 16 */

Transact *Newtrans():;
extern TIME simtime;

{ BOOLEAN transport
Transact *newtransl;

newtransl

FALSE;
/*wave*/

Newtrans{() ;
newtransl->future_time
*newtransl->val
post_trans(dlist (0],

simtime + 41;
xor (xor (*slist [0], *slist[1]),
newtransl, transport);

*slist[2]);

3.2.5.1. Static Data Structures

The C code begins by declaring all static data structurcs to be used in the simulation such as

drivers, signals, and the process table entries. All these statcments are declared inside a function
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called sim_initialize, which is invoked by the kemel of the simulator to set up the static data

structures.

Each signal encountered in the symbol table is entered into an array, sorted by signal name.
Each driver encountered in the operation table results in creating a driver structure that is doubly

linked to the signal it affects, assuming each signal has only a single driver.

Each signal has a sensitive process list which holds indices into the process table for all
processes sensitive to a signal. The sensitive process list is maintained as an array, with the first
clement of the array indicating how many processes the signal is sensitive to. In this example, no
processes are sensitive to signal s29 ("F"), while s27 ("X"), s26 ("Y"), and s28 ("Z") each have onc
proccss sensitive 10 it, and its index in the process table is 1. (The zeroth position is not used to hold a

proccess.)

3.2.5.2. Process Functions

In addition to the initialization routine, a C function is generated for each process. In this case,
there is only one process, so there is only one C function. The function generated for the three input
cxclusive OR example is shown in above; the function is namcd p16 because it models a process
which happens to be line 16 in the operation table. Names assigned to functions that modet VHDL
processes will always be Pn where n is the line on which the process statement is found in the VIA

file.

Each C function that models a process statement is passed two parameters: an array of pointers
1o drivers, and an array of pointers to signal values from the process table. When this process is
executed, a new transaction is created, loaded with the appropriate time and value, and is posted to

the projected output waveform of the appropriate driver.
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. 3.3. Simulate Package

The Simulate package consists of three groups of data structures listed below.
o The driver and signal structures (static data structure)
o The process table (static data structure)
e The event lists and time queue (dynamic data structure)

The C code for the first two groups of data structures are gencrated in the Build package, and
are compiled and linked with the kernel of the simulator. The third data structure is dynamically

allocated and freed during the execution of the simulation.

3.3.1. Driver and Signal Structures

The driver structure is necessary to maintain, for cach driver, the current value of the driver, a
pointer to its projected output waveform, and a pointer to the signal that is affected by it. The ficlds

of the driver structure are shown in Figure 3-2.

To Signal Structure

T

Signal Pointer l

«—+ e Prev Trans Pir Next Trans Pr o4——

Current Value ol

Transaction Ptr L E—

Figure 3-2. Driver Structure
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o In a VHDL description, the value of a signal is a function of the value of its drivers N
A ., ")
L'd
. . . . N
:’ (Intermetrics, 84a). When a driver changes value, its associated signal must be re-cvaluated. The -."-
first ficld depicted in the driver structure (signal pointer) is a pointer to the signal structure that is _‘-a: \
~
ey
. . -
affected by a change in the driver value. The previous and next transaction pointers (Prev Trans Pir _-.:
" "]
LAY
. . . LN
and Next Trans Ptr) will be discussed later as part of the event list. The current value ficld on the ol
driver structure is a pointer to the value of the driver’s value. The valuc of a driver is not a fixed data :
size. A driver can have a value of type bit, character, integer, rcal, or bit vector. In order to conserve ey
e
memory, all driver values are maintained as pointers to driver values. The final ficld is a transaction N
pointer which maintains a pointer to a driver’s projected output waveform.
A signal structure is created for each signal in the symbol table. It maintains a pointer to an :
array of processes that are sensitive to changes in the signal value. Whenever the signal value -:-\-
Y.
changes, all processes sensitive to it are marked in the process table. The signal structure must also ,..-_.
N
maintain a pointer to the current value of the signal, as well as a pointer to a string indicating the R
name of the signal. The driver list is a linked list of all drivers that the signal is a fuction of. The j:':::
Sy
L linked list of drivers is uscd by the bus resolution function to determine the value of a signal. The bus ®
< 7 }\-_
. . . . . . . -\ - N
resolution function ficld in the signal structure is a pointer 1o a function that resolves the values of LA
\‘.-
. . . .. . . - . . . 0 ‘~\.~
drivers a signal is sensitive to. In this simulator implementation, since only single drivers are A
W,
. . . . . . . . P
allowed, the bus resolution function assigns the value of a driver to the signal it drives, Figure 3-3 ®
AT
/'_‘ -

depicts a single signal structure with its relationship to the driver structure and sensitive process list.
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Driver List o+—3.To Driver Structure

Sens Proc Ptr o+—>To Sensitive Process List

Bus Res Fcn ——>

Curent Value -~

Signal Name  of{—3

Figure 3-3. Signal Structure

3.3.2. Projected Output Waveform

Each driver in a simulation maintains a projected output waveform in which future time/value
pairs are maintained. The simulator manages the projected output waveform as a linked list of times
and pointers to values. As previously justified, the projected value of a driver is maintained as a
pointer to accomodate the various data sizes in VHDL. A single element of a drivers’ projected

output waveform is depicted in Figure 3-4.

Next -~

Future Time

Future Value L

Figure 3-4. Projected Output Waveform Element
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3.3.3. Process Table

The process table is set up during the Build phase, and consists of all processes in the VHDL
description. A single process table entry is depicted in Figure 3-5. The process table is maintained as
an array of records, each record consisting of the following ficlds: A pointer to a C function that
simulates the process, an array of drivers that could be affected by the process firing, an array of
signals that are needed to evaluate the process, and a next field used to maintain a list of all marked

processes.

Array of Pointers to Drivers

Array of Pointers to Signal Values

To C-function

- Process Pointer Next e

Figure 3-5. Process Table Entry

When the Build Phase of simulation is complete, the number of process is in the VHDL
description is known, so the process table can be dimensioned as an array of exact size. Since the
size of the process table is known and since it will never change, dynamic memory allocation (linked
list) is not necessary. Each process table element maintains a pointer to a C function that models the
VHDL process. The order of process execution is dynamic, making it difficult to execute functions

by name since the function name would have to be imbedded in the C code.
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By accessing the function by address, processes could be executed indirectly without explicitly

providing the name of the C function.

When a process executes, both input parameters and output paramcters must be specificd. The
input parameters are signal values that are necded to evaluate a process. They are provided by
passing the process a list of pointers to signal values. When a process exccutes, drivers' projected
output waveforms could be modified as a result of signal assignment statements in the process. By
maintaining a linked list of all drivers affected by a process firing, the projected output waveform of
cach of these drivers can be accessed. By passing the addresses of signal valucs and projected output
wavcforms to a process, the simulation can be casily modified to handle component instantiation.
When multiple instances of a component occur, a process table entry is created for each process, but
references to the same process are resolved by having them all address the same C function, with
cach passing different signal values and projected output waveforms. The final ficld in a process
table entry is a next field used for marking processes for execution. A linked list, initially null,
contains all processes that have been marked for execution. When a signal value changes, all
processes scnsitive to that signal are marked by adding the next ficld to the linked list of marked
processes. Before a process is marked for execution, its next field is examined. If it is null, the
process is added to the linked list. If it’s not null, then it’s already part of the linked list, so nothing is

done,
3.3.4. Event Lists and Time Queue

An event list is a doubly-linked structure that maintains all drivers whose first transaction on its
projected output waveform is scheduled 1o occur at a given simulation time. For example, if three
drivers had the first transaction on their respective projected output waveforms scheduled to occur
35ns into the simulation, each of these three drivers would be on the same event list. Figure 3-6

depicts this condition.

A T e e e T e e e e TN e S e Tt e e
J‘_.l'.-. » 'V."E. \J'NJ‘\. AT ‘-f“- A e e

J it

“»

L 1N
1 ]

X
n

y

P N W.il“
fsz:\

s
Yy

1,

A

[ YA

VYL

.
-
-

2 s

oy

e
e l. l. t
PN

] .I'
.y

NI.‘-'.
ot
L
Aot

el %
O

@
A
A

AR
® IS
LV AR

<40
"'I‘l.

-
.

s

A Y
WSy

5

Iﬂ

*

l..’~

v
. .

R
.




N “ T » !. b A A n - . o . Ln Y A - L) - ".
e
20
vy
Driver Swructure Driver Structure Driver Structure
NULL
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Next Next Next L
NULL
Figure 3-6. Event List for a Given Simulation Time
The time queue is dynamically allocated and freed during simulation. It is maintained as a
singly linked list of records. Each record comtains fields to hold a future simulation time, and head
and tail pointers to point 1o the head and tail of the event list for the given simulation time. 11 there
were an event list as described in the previous paragraph, then a time queue element would exist for
i-. 35ns as shown in Figure 3-7. Figure 3-8 depicts the general case of a time queue and its relationship

to event lists.

Sim_time == 35ns

Next_event_ptr - e
Tail_ptr o
Head_ptr

-~r—e

Figure 3-7. Time Qucue
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Sim_time

Next_event_ptr

o

Tail_ptr

-

Head_ptr

NULL

AN
o
Sim_time == 35n
Next_event_pir o
Tail_ptr .
Head_ptr ?
NULL
Driver Structure
e Prev Next o
Driver Structure
e Prcev Next o
{
Driver Structure
- Prev Next o
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Figure 3-8. Time Queue and Event List
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4. Results and Analysis
NS "
-‘:‘I:‘ *m
BV [
The UNIX-based VHDL simulator was incrementally designed, with the final product w
N
incorporating the major features of the language. This chapter presents the features incorporated into -
L]
- v,
the simulator and analyzes the final product, comparing it to its VMS-based counterpart where *
)
appropriate. Both the UNIX-based and VMS-based simulators are evaluated for CPU time and disk -
»
Y
storage requircments by simulating VHDL descriptions on cach. The merit of the UNIX-bascd -»';.
o
)
-
simulator is evaluated based on the language features implemented, its user’s interface, and computer '5;"
resource requircments,
~
’\.
4.1. Simulator Design w
Since the analyzer and simulator were designed concurrently, the overall goal was to have -
end-to-end throughput; that is, to have the ability to analyze a VHDL description, produce the T
intermediate form (VIA), and simulate, producing an output report. -
\-c
In order to obtain end-to-end throughput, the simulator was incrementally designed by taking a e
‘- subsct of VHDL, designing a prototype for it, and validating its operation. This was first done for N
'.--f
scquential assignment statements. Both the analyzer and simulator were designed to handle ;:-::
[ .‘l
AP
scquential signal assignment statements. The results were validated, and the package was released as o
a Beta version. When the sequential assignment statement was validated, the simulator was modified .
to handle process statements, which could contain one or more sequential assignment statcments. -
Between the design capable of simulating sequential signal assignment statements and the -:'_'
design capable of simulating process statements, the basic algorithms did not change significantly, but s
\ . l
- . . \“
the data structures required restructuring to accommodate the new featurcs. Following the .
-
£
incorporation of process statements into the simulator, neither algorithms nor data structures required "
o
change, and the additional features were casily incorporated into the design, since the mapping of .
(S
many of the control structures from VIA to C was largely one-to-one. NG
o
‘ -
St
‘.:_
N
“.
A ~
...J-. '.<~
. ::
4-1 -
Y
. Rl "-..‘-. N P ) _‘-.. - 'J'. P -._.-'_ b .J'_.-" AR N
*f. e e A L L e T A '.L\.i:




A

oA E E N

el ey

DfeChENCN A

A
-}-{

4.2. Simulator Operation

4.2.1. Command Line Options

Two of the requirements for the simulator are that it have a interactive user’s interface, and that
it be relatively easy to use. This section describes the interactive features implemented, which

contribute to the simulator’s ease of use.

When the user starts a simulation, information is provided via the command line and later from
interactive responses from the user. On the command line, the user is permitted to specify any of the
following options which perform the functions indicated. If an option is not selected, a default value
is used.

-i simulate in interactive mode.

-0 out_file designates the output transaction file.

-s start_time sclects the simulation start time.

-t term_time selects the simulation tcrmination time.

v vector_file specifies the name of the input vector file.

By default, simulation is executed in non-interactive mode, the file output.tra is used for the
oulput transaction file, 0 and 1ms are used for the simulation start and termination time respectively,

and no input vector file is used if none is the -v option is not specified.

4.2.2. Interactive Features

If the -i option was specified on the command line, the user exercises the simulation in
interactive mode. In the interactive mode, the user has the option of setting breakpoints, viewing
signal values, changing signal values, sctting and locking a signal to a value, unlocking a signal
previously locked, running the simulation to the next breakpoint or until completion, running the
simulation until the next time in the time queue, and terminating the simulation without further

processing.

When the user starts the simulation in interactive mode, the data structures for simulation are

initialized, and the user is prompted with the following menu:

V. \'-

e e e T S T AT P N Y

o

y "

FAAAT
% e N

PR A
h -.'-s -

b

A |
L)

o

AR TN e e TR TR T S
O] 'I.l-“¢

P
A

0T N

o




Fe e 4 1 1t &

ad waht ‘o A - et gty A Ao tall bl Vel 4 ‘8 Vo d el 0.4 oh YOV R Ao TSR Al kA VY
) A Bl e il TR TV T YT

Interactive Simulation Menu

~ -
LA
Qa2
? -Help .
b - Seta brecakpoint :.k:
v - View signal valuc(s) "
2
Le)
¢ - Change signal value(s) N
1 - Setand lock a signal to a value k
u - Unlock a previously locked signal :.',"
N
“f
r - Run the simulation to next breakpoint or completion )
n - Run the simulation until time advances :'_::
x - Terminate the simulation .Z:::
N
)
. . . . . 7
The user is assisted through the simulation with sub-menus and is prompted for all required
infoimation. w
o~
‘0 4.3. Program Results '
-® .\_A
o
o
4.3.1. Program Size e
oA
S
As described earlier, the UNIX-based VHDL Simulator consists of a Build package and a T
'
Simulate package. The Build Package consisted of 1,100 lincs of C source source code, which ::’_
produces an executable file 82,250 bytes in size. The Simulate package consist of 1600 lincs of C .: .
source code, which produces an exccutable simulator with a minimum size of 90,700 bytes in size, N
)
depending on the size of the VHDL description. S
4.3.2. Language Features Implemented o
g.
The simulator is capable of handling the predefined types BIT, BOOLEAN, INTEGER, and )
o
the physical type TIME, as well as enumeration types. The operators that are supported are listed 2"
‘&
below in Table 4-1. N
3
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Operators :'.
I. \’
s o]
N logical operators: and, or, nand, nor, xor, not o
:. re!auona} operalors: =, /=, <, <=, >, >= o
N arithmetic operators: +, -, *, /, mod, rem ~.$
. miscellaneous operators: **, abs Sa
)

Cl

" '.' e

Table 4-1. Operators Supported

)
0

-y
[ 4

4
N

The logical operators and, or, nand, nor, xor, and not are valid for the types BIT and

4
X

e

BOOLEAN. All of the logical operators require two inputs (binary operators), with the exception of

.“.
n
not, which is a unary operator. The standard relational operators are implemented. Each of the ry
. . . . )
relational operators accepts two operands, which must be of the same type. The relational operation N
is performed, and rcturns a value of type BOOLEAN. The four standard arithmetic operators are %
\l

'
y

also implemented for integer types, as well as the exponentiation operator and the absolute valuc

-

® operator. )
A
Tables 4-2 and 4-3 list the sequential and concurrent statcments that are implemented in the
UNIX-based VHDL simulator, as described in the VHDL Language Reference Manual (Intermetrics,
85a). '
Sequential Statements
¢ Signal Assignment Statement
¢ Enable/Disable Statements
e Assertion Statement
o If Statement
e Case Statement ]
Table 4-2. Scquential Statements Supported
l."f )
e N e e e e e e L e
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Concurrent Statements

Ve
‘Y

¢ Single Block Statement

¢ Process Statement

¢ Concurrent Assertion Statement

o Conditional Signal Assignment Statecment
o Selected Signal Assignment Statement

Y

\

N b

FIARC

.
N

\{"A.’"

“fx
b
[

>

Table 4-3. Concurrent Statements Supported

*, @

The operators and sequential and concurrent statements listed above have been tested and

e
RN

r e, .

validated through analysis and simulation. The VHDL descriptions used to validate the operation of

the simulator are included in the VHDL simulator test suite included in Appendix A.

4.3.3. Designs Tested

In this section, (wo circuits of practical interest are examined in detail, comparing the UNIX-
based simulator’s performance to the VMS-based simulator’s performance. Factors such as time

required to perform intermediate phases in a simulation, disk space requircments, and simulation

results are examined.
4.3.3.1. Full Adder Description

4.3.3.1.1. UNIX-based Simulator

The VHDL description for the full adder evaluated is presented in Appendix B. The VHDILL

description was analyzed with the UNIX-bascd VHDL analyzer (Bratton, 87), producing the VIA file,

$iplale ot

in Appendix C. The Build package of the simulator read the VIA file, producing the C files, depicted

-

in Appendix D. The Build package required 0.5 CPU seconds, and the the resulting C files occupied

AR NS

EI N

538 bytes of disk space. The C files were compiled and linked with the kernel of the simulator

.
AANE
SAEPINE

(Simulate package) in 5.3 CPU seconds, producing a 22,528 byte executable file. The exceutable file
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was run in non-interactive mode taking 0.3 CPU scconds. The results just presented are summarized

in Table 4-4.

CPU Time (sec) File Size (Bytes)
Phase UNIX VMS UNIX VMS
Version  Version | Version  Version

Build 0.5 92.74 538 58,368
Compile 53 53.68 22,528 242,176
Sim 03 6.44 512 8,192

Table 44. Computer Resource Requirements

4.3.3.1.2. VMS-based Simulator

The same VHDL description was analyzed by the VMS-based simulator, producing the
required intermediate (IVAN) files. The mg command was executed, requiring 92.72 CPU scconds,
producing files requiring 58,368 bytes. The build command of the VMS-bascd simulator was
excrcised, requiring 53.68 CPU seconds, and requiring 242,176 more bytes of disk space to produce
the executable simulator. The simulator was exccuted, requiring 6.44 CPU seconds, and 8,192 bytes
to store data for report generation. The data for the VMS-based simulation is also summarized in

Table 4-4. The waveforms produced by both simulators are displayed for comparison in Figure 4-1.
4.3.3.2. Ring Oscillator Description
The VHDL description for the ring oscillator circuit evaluated is presented in Appendix B, The
testing sequence for the full adder was repeated for the ring oscillator.
4.4. Performance Analysis

The performance of the UNIX-based simulator is evaluated in terms of the subsct of the
language implemented, the user’s interface, and the CPU execution time and disk space requirements.

Where appropriate, the UNIX-based simulator is compared to its VMS-based counterpart.
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4.4.1. Language Features Implemented

As noted carlicr, the UNIX-based simulator implements a subsct of the language. While this
may be viewed as a shortcoming, one must consider the need for a simulator capable of simulating
100% of the language. The UNIX-based simulator was designed primarily for the university
community, where senior undergraduate and beginning graduate students would be introduced to the
features and capabilitics of VHDL. For this class of users, a simulator capable of simulating the
major features of the language is sufficient. In a multi-user environment such as a university,
qualitics such as modest disk space requirements, short turn-around time, and case of usc are of
primary importance. The features implemented in the UNIX-based simulator satisfy the needs of the

user group it was designed for.
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Figure 4-1. Full Adder Simulation Results
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4.4.2. User’s Interface

The UNIX-based simulator provides the user with the option of specifying simulation

)
. i . . . . /-‘
paramcters on the command line, as well as the ability to view intermediate results during a o
o~
simulation. The user must include all simulation parameters, such as the simulation start and stop ot
v

o
"\

time, in the VHDL description. If the user desires to change any of these parameters, the VHDL

e

RN

description must be modified, analyzed, and simulated. Since the simulation start and stop time do

»
N

not affect the syntax and semantics of the VHDL description, rc-analysis is unnccessary. By

providing the user with the opportunity to change these parameters interactively, the analyzer need

. )
not be run unnecessarily, and the simulator can be executed repeatedly for different test cases without
modification. -

Another attribute of the UNIX-based simulator that boosts productivity is the ability to provide -

a vector file of input stimuli to a circuit. With this feature, once the user has obtained a correctly .
analyzed VHDL description, it can simulated repeatedly, providing different sets of input stimuli via

the vector file. Since the circuit does not change, analysis of the description and rebuilding the -

-

simulator is not performed. The VMS-based simulator provides input stimuli via signal assignments

.

(Y

in the VHDL description. When the input stimuli change, the VHDL description must be changed

S |

TR N

o
T oy

and re-analyzed.

13
[}

AR

4.4.3. Utilization of Computer Resources

An examination of the results for the full adder and ring oscillator designs show the disparity in .
CPU time and disk storage requirements for the UNIX-based and VMS-based simulators. Minimizing
these two parameters is particularly important in a multi-user environment such as a university where

users are faced with resource and time constraints.

4.5. Summary

The UNIX-based simulator was evaluated based on the language features implemented, its

user’s interface, and its utilization of computer resources. Based on the results obtained, the UNIX- o
B
based simulator provides the university community users with a VHDL simulator capable of ~
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simulating a major subsct of the language that is easy to use, is fast, and has modest storage

requircments.
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5. Conclusions and Recommendations

The purpose of this thesis was to develop a VHDL subset simulator to be incorporated into the

growing AFIT VHDL Environment (AVE). The simulator supports common types, and a major

subset of the sequential and concurrent statements of VHDL. The simulator is capable of reading the
VHDL Intermediate Access (VIA) form produced by the VHDL analyzer, and producing C code

which is compiled and linked with « s« 2ulaior kernel, which is then executed, to produce a report filc.

The completion of the VHDL simulator marks a significant contribution to the VHDL CAD

tool set in the AVE. The simulator compares favorably 1o existing CAD tools.

5.1. Conclusions

The UNIX-based simulator successfully implements a subsct of the VHDL language. The
simulator was designed for runtime efficiency, efficient disk utilization, and ease of use. When a
design was simulated by the UNIX-based version and the VMS-based version, the UNIX-based

version was superior in all three areas, with both simulators producing the same results.

5.2. Recommendations

5.2.1. Implementation of the Complete VIIDL Version 7.2

Since this thesis implements a subset of the language, it scems natural that the simulator be
developed to simulate the entire language. This is the first major step that should be 1aken. The data

structures used to develop the simulator were designed to later incorporate the features of the entire

language.

5.2.2. Development of the Complete VHDL Analyzer

Without a complete analyzer, a complete simulator is not very useful. A complete analyzer
should be developed before, or in parallel with the development of the complete simulator. If
developed  concurrently, the analyzer and simulator should maintain end-to-end  throughput

throughout their design. Features should be validated before others are added.
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5.2.3. Efficiency

The simulator should be optimized for runtime efficiency. The data structures were designed
runtime efficiency and workability in mind. At the higher levels of design, the data structures and

algorithms were designed for runtime efficiency.

At the lower levels in the design, however, efficiency was occasionally sacrificed in order to
produce a working product. For example, items such as search and sorting algorithms werc not

optimally implemented, but the software was designed so these modules could be casily redesigned

and replaced.

5.2.4. IEEE Version
The implementation of this simulator supports the VHDL version 7.2, Future versions of the
simulator should be implemented to adhere to the IEEE VHDL standard.
5.3. Summary

The development of the VHDL simulator makes a significant contribution to the AFIT VHDL
Environment, and provide a bascline for the future development of the AVE. Additionally, the

simulator, in conjunction with the analyzer, provide the university community and industry with a

VHDL CAD tool set that operates under the UNIX operating system.
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Appendix A - Simulator Test Suite

RS
’
oA
Included in Appendix A are the VHDL descriptions used to validate the simulator.
‘ : ‘_:.-
\ :._‘-._
| ..-'_-l'
| ‘-’\
75y
9
Frd
Ny
-- File := 1.v .;:.
-- This description tests the signal assignment statement and Ay
-= process statement. by ?
-- L
. o
entity TEST1 O
\.::'.'
(X,¥: in BIT; NN
CIN: in BIT; .
SUM: out BIT; ®
COUT: out BIT) -7
is ;?
end TEST1; o
ii‘ architecture DATA_FLOW IMPL of TEST1 is ®
-
BLOCK_1: block o
signal C: BIT: -- Local signal declaration :;m
S
begin ®
process (X, Y, CIN, C) S
begin e
SUM <= X xor Y xor CIN after 5 ns; RO
C <= (Y and CIN) or (X and CIN) or (X and Y);
COUT <= C after 6ns; ;G
end process; o
RO
end block BLOCK_1; o
end DATA_FLOW_IMPL; Y
e
o
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‘ -- File := 2.v -
t. -- This description tests the signal assignment statement. -
N -- <.
: entity TEST2 :.:.
oS
. . A
. (X, Y: in BIT; )
CIN: in BIT; ot
I'd
A SUM: out BIT; e
» COUT: out BIT) -
S ‘-_.
, is /
' end TEST2; e
)
architecture DATA_FLOW_IMPL of TEST2 is ot
BLOCK_1: block o
) .,
\ signal C: BIT; ~- Local signal declaration ;
\ )
begin A
~
SUM <= X xor Y xor CIN after 5 ns; >
c <= (Y and CIN); ~
COUT <= C after 6ns; -
‘.. end block BLOCK 1; '
end DATA_FLOW_IMPL; =~
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~-- File := 3.v
-- This file tests misc. features of VHDL, including
- the process stmt, if stmt, enable, disable.

entity TEST3

(X,Y: in BIT;
CIN: in BIT;
SUM: out BIT;
COUT: out BIT)

is
end TEST3;

architecture DATA FLOW_IMPL of TEST3 is
BLOCK_1: block

signal C: BIT; -- Local signal declaration
begin
process (X, Y, C, CIN)
begin
if X = ’1’ then
SUM <= X xor Y xor CIN after 5 ns;
elsif X = 0’ then

C <= (Y and CIN);
COUT <= C after éns;
else

C <= X;

end if;

enable X, Y;

disable C;

end process;
process (X)
begin
if X = 0’ then
disable X;
end if;
end process;
end block BLOCK_1;

end DATA_FLOW_IMPL;
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~- File := 4.v
-- This description tests the enable,

entity TEST4
(X,Y¥: in BIT;
CIN: in BIT;
SUM: out BIT;
COUT: out BIT)

is
end TESTA4;

architecture DATA FLOW_IMPL of TEST4 is
BLOCK 1: block

signal C: BIT;

begin
process (X, Y, C)
begin
SUM <= X after S5 ns;
C <=Y ;

COUT <= C after 6 ns;
enable X, Y;
if C = 0’ then
enable C;
elsif X = ’1’ then
disable C:
else
enable X:
end if;
end process;
process (X, Y)

begin
C <= transport ’'1’ after 1 ns;
C <= X;

C <= Y after 2ns, X after 3ns;
end process;

end block BLOCK 1;

end DATA_FLOW_IMPL;

disable stmts.

-- Local signal declaration
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~- File := 5.v
-- This description tests the case, enable, disable stmts.

entity TESTS
(X,Y: in BIT;
CIN: in BIT;
SUM: out BIT:
COUT: out BIT)

is
end TESTS;

architecture DATA FLOW_IMPL of TESTS is

BLOCK 1: block

signal C: BIT; -~ Local signal declaration
begin
process (X, Y, CIN, C)
begin
SUM <= X xor Y xor CIN after 5 ns;
C <= (X and Y);

COUT <= C after 6 ns;
enable X, Y:
if X = 70’ then
disable X;
end if;
case Y is
when 0’ => C <= (' after 1 ns;
when 1’ => C <= "1’ after 3 ns;
end case;
if C = 0’ then
enable C;
elsif ¥ = 71’ then
disable C;
elsif X = "1’ then
enable X;
end if;
end process;

end block BLOCK_1:

end DATA _FLOW_IMPL;
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» ~-- File := 6.v t,—

) -~ This description test the case stmt exhaustively. :-:

: entity TEST6 ‘::f

e

) ra

(X,Y: in BIT; o
CIN: in BIT; b
v'l

‘ SUM: out BIT; -,

3 COUT: out BIT)

X is '.;::
) end TEST6; )

'
architecture DATA FLOW_IMPL of TEST6 is Y
BLOCK_1: block -
| )
. signal C: BIT: -- Local signal declaration o~
signal D: INTEGER; -
]

" --
[ begin -
3 process (C) TN
y begin K

c <= (X and Y); ;;
. case D is o
» ‘. when 0 to 10 => C <= X; )
K o when abs(-11) => C <= Y;
) when others => enable C; .
end case; -
N end process; ..

)

. end block BLOCK_1; ’
)

j end DATA_FLOW_IMPL; o
o

b .\'
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; -~ File := 7.v N,
! -~ Three input XOR, testing process & signal assignment stmt. .‘:
) 3
" ey
'3 entity XOR3 .: ‘
K -
. (X,Y: in BIT; -- one-bit addends ¢
. Z: in BIT; -- carry in .
', F: out BIT) -~ one-bit sum -
>, “
‘4-: is .': X
e end XOR3; N
architecture DATA FLOW_IMPL of XOR3 is
) » fl
~ '-‘.
~ BLOCK_1: block ~
)
n" ) ,‘ q
"~ begin ..
: process (X, Y, 2) e
. begin
F <= X xor Y xor Z after 41 ns; e,
:“: end process; ..
g =
j end block BLOCK 1;
’ s end DATA FLOW IMPL; '
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-- File := 8.v o
- This description tests the if statement. in
entity IF_STMT <.
(A,B: in BIT; »
C : out BIT) =
o
is ';
end IF_STMT; 9
3
architecture DATA_FLOW_IMPL of IF_STMT is »
BLOCK_1: block -l_"
begin f:
process (A, B) i}
begin .
if A = 0’ then
C <= A; .
elsif B = '1' then
C <= "11";
elsif A = '1’ then !
C <= B; .
- else <4
] .’ C <= '0"; .
* end if; .
end process;
end block BLOCK_ 1; ]
—’:
end DATA_FLOW_IMPL;
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3 -- File := 9.v ':
L -- This description tests the signal assignment statement. }}
X entity TEST1 )
" _ o
is
. end TEST1; Yy’
N architecture DATA FLOW_IMPL of TESTl is -3
.. 4
o BLOCK_1: block -
signal Al,A2: BIT; -- Local signal declaration
- signal Bl, B2: integer; o
: begin N
? process (al, A2, Bl, B2) -
N begin 4
Al <= A2 after 5ns, ’0’ after 10ns, A2 after 15ns;
N A2 <= transport Al after 5ns; “a
[ Bl <= B2 + 100 after 2ns; -
o B2 <= Bl; =
o end process; ]
~ ® end block BLOCK 1; -
K N
~ end DATA_FLOW_IMPL; v
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~- File := 10.v
-- To test the disable stmt.

entity TEST1

is
end TEST1;
architecture DATA FLOW_IMPL of TEST1 is
BLOCK_1: block
signal Al: BIT; -- Local signal declaration
begin
process (Al)
begin
disable Al;
Al <= 1’ after 3ns;
end process;

end block BLOCK 1;

end DATA_FLOW_IMPL;
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-~ File := 11.v ~
-- To test enable
- ‘ }
entity TEST1
‘:_\
is R
end TEST1; L.
architecture DATA_FLOW_IMPL of TEST1 is S
- - LS
N
BLOCK 1: block DR
signal Al, A2: integer; ~- Local signal declaration ]
~
begin S
process (Al, A2) ;
begin o
Al <= Al + 1 after 2ns; oo
B2 <= A2 + 2 after 1ns; ; <
i end process; L
f process (Al, A2) :.:-:.
X begin
3 disable Al; o
. if (Al > 5) then
. enable Al; -~
de end if; ’
i A2 <= A2 + 2; _:\
. end process; .I_:
NS
. end block BLOCK 1; I-',:-
-
ol
end DATA_FLOW_IMPL; >
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Appendix B - Full Adder VHDL Description

Y
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|

|

A

entity Full Adder

(X,Y: in BIT;
CIN: in BIT;
SUM: out BIT;
COUT: out BIT)

is
end Full Adder;

architecture DATA_FLOW_IMPL of Full_ Adder is
BLOCK_1: Dblock

signal C: BIT; -~ Local signal declaration
begin
process (X, Y, CIN, C)
begin
SUM <= X xor Y xor CIN after 5 ns;
C <= (Y and CIN) or (X and CIN) or (X and Y);
COUT <= C after 6ns;
end process;

@
". v end block BLOCK_1;

end DATA FLOW_IMPL;

S
B-1
Rt A O S S Rt DA AR PR S E R LTt Sttt RN N P CIC SN
RECIC I SRR GRSl N GO, PO LU, P 0. P A A ATV AT A AT S A S A

P L N

e e

et et

e

"

i AP

o 5
RS
Al

.
I

e (O P
AR A (NN
SIS .-

~

R
AT
NS

e ®
.7"‘

CAA,

s
-

T
y ':‘i{‘- 2,

v

L4 -4-

T
v
»r A A

S T
MY
st

Y -
iﬁ

SO
,‘SI‘:"IH g

s
.I‘l.l“ -

2 1
»

- TN N ST
;'I .: -{ .‘. -'_ -._ " "\.‘ -" -,' .

Lo =
Y 'y

N

P ("'

U ol o]

-
‘

2

s'e
LS

l"
N

l..{

NS
l"‘f[/',‘



ol tu o o Sud ob AslTab el e 4Te Do 220 AR A AISNAR o

S
v
N
e
Appendix C - Full Adder VIA File -
N
o -~
o "
»
W
Ay
0 34 48 3 >
0 _ANY 0000 -1-1-1-1-1 N
1 STANDARD 3 4 0 1 -1 -1 -1 -1 -1 tﬁ
2 INTEGER 2 1 0 1 -2147483648 2147483647 2 -1 -1 b
3 CHARACTER 2 2 0 1 128 0 127 -1 -1 ?
4BIT2201201-1-1 -
5 BOOLEAN 2 2 0 1 2 0 1 -1 -1 -
6 FALSE 1 30150 ~1 -1 7 )
7 TRUE 1 30151 -1-1-1 -
8 SEVERITY LEVEL 2 2 0 1 4 0 3 -1 -1 Ve

1
2

9 NOTE 1 3 0 1 8 0 -1 =1 10 )

10 WARNING 1 3 0 1 8 1 -1 -1 11
8
1
1

S

11 ERROR 1 3 0 1 2 -1 -1 12
12 FAILURE 1 3 0 g8 3 -1 -1 -1

) l'
AV AN

13 NS 1 3 01 14 -1 -1 15 i'u
14 TIME 2 5 0 1 0 2147483647 8 13 -1 "
15 US 1 301 14 1000 -1 -1 16 =t
16 MS 1 3 0 1 14 1000000 -1 -1 17 '
17 S1 3 0 1 14 1000000000 -1 -1 -1 s
180130140 -1-119 -
191130141 -1-1-1 -

'I

2, %

VLT, T Y P ST AW VRS R Y 5 VRS W & T o T dmmmm—m W w Tem e R

LV

20 REAL 2 6 0 1 -2147483648 2147483647 20 -1 -1
21 NATURAL 2 1 0 1 0 2147483647 2 -1 -1
". 22 POSITIVE 2 1 0 1 1 2147483647 2 -1 -1
- 23 STRING 2 3 0122 310 -1
24 BIT_VECTOR 2 3 0 121 400 -1
25 TEST1 3 1 0 25 30 -1 -1 -1 -1
26 Y1 19254-1-1-127
27 X1 19254 -1-1-1 -1
28 CIN 11 9 254 -1 -1 -1 26
29 SUM 1 1 17 25 4 -1 -1 -1 28 -
30 COUT 1 1 17 25 4 -1 -1 -1 29 i
31 DATA_FLOW IMPL 3 2 0 31 25 47 -1 -1 -1 o
2 BLOCK 1 1 4 0 32 47 -1 -1 -1 -1 el
33C110334-1-1-1-1 -
01-1-1-1~-1 -1 .
9 17 -1 5 7 -1 -1 ’
9 20 -1 27 5 -1
9 20 -1 4 26 -1 -1
9 20 -1 4 28 3 -1
9
1
9

R
’.

SN

[ SN N

20 -1 4 33 4 -1 K
520 -1 -1 2 18 -1 -
22 -1 4 29 17 -1
9 22 -1427 9 -1
99 22 -1 4 26 -1 -1 -
10 367 22 -1 4 8 11 -1 s
11 9 22 -1 428 -1 -1 ]
12 367 22 -1 4 10 -1 -1 EAED
13 11 22 -1 14 -1 -1 5 Sk
14 291 22 -1 14 13 12 -1 ’
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o ) AL\ alatate na ; Sladiadadindadie st diedidcedie gt iiadie gt gt gt gis dhrgty
:: .
- S
: RS
2 3
. N
: 15 13 22 =1 -1 14 -1 -1 £
: A 16 21 22 -1 5 -1 -1 0 e
i \J'\‘- »
~ phy 17 359 22 -1 -1 16 15 -1 Ya
18 4 22 -1 -1 7 36 -1
19 9 23 -1 4 33 35 -1 ‘
. 20 9 23 -1 4 26 21 -1 -
Q) 21 9 23 -1 4 28 -1 -1 -
e 22 294 23 -1 4 20 25 -1 -
. 23 9 23 -1 4 27 24 -1 .;
-~ 24 9 23 -1 4 28 -1 -1
25 294 23 -1 4 23 -1 -1 e
26 339 23 -1 4 22 29 -1 .-
27 9 23 -1 4 27 28 -1
28 9 23 -1 4 26 -1 -1
29 294 23 -1 4 27 -1 -1
30 339 23 -1 4 26 -1 -1
A 31 11 23 -1 14 -1 -1 0 -
. 32 291 23 -1 14 31 30 -1 -
N 33 13 23 -1 -1 32 -1 -1 oy
[~ 34 21 23 -1 5 -1 -1 0 '~ 9
N 35 359 23 -1 -1 34 33 -1 =
. 36 4 23 -1 -1 19 44 -1 e
® 37 9 24 -1 4 30 43 -1
L. 38 9 24 -1 4 33 -1 -1 =
y 39 11 24 -1 14 -1 -1 6 o
N 40 291 24 -1 14 39 38 -1 o
-~ 41 13 24 -1 -1 40 -1 -1 s
: 42 21 24 -1 5 -1 -1 0 -
p iy 43 359 24 -1 -1 42 41 -1 -
- ' ¢ 44 4 24 -1 -1 37 -1 -1 o
- 45 345 25 -1 -1 6 -1 -1 o
. 46 12 27 -1 -1 1 45 -1 -
. 47 301 27 32 -1 46 -1 -1 o
- ‘\/
. Ny
[y )
X =
3 2
. .
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Appendix D - Full Adder C Files Generated

#include <stdio.h> -
#include "sim_stru.h" .
int *s27_pl; -
int *s33_pl;
int *s28_pl;
int *s26 _pl; o
int s26_sens_proc(2];
int s27_sens_proc(2]; oA
int 828 sens_proc(2];
int s29_sens_proc(l]:
int s30_sens_proc(l];
int s33_sens_proc[2];
Driver *pdl(3}; int *psl[10};

|
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v
v
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s

o' s

sim initialize(sig_array, pt)
Signal *sig arrayl(];
Process_table item pt[];
{
Signal *Newsig():
Signal *s26;
Signal *s27;
.. Signal *s28;
\eo Signal *s29;
' Signal *s30:
Signal *s33;
char *strsave();
extern int s26_sens_procil;
extern int s27_sens_proc|[];
N extern int 828 sens proc(];
extern int s29_sens_proc{};
.- extern int s30_sens_proc(];
extern int s33_sens_proc(];

A e ey

..
i — Vo

Ve et
.
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.
v e
WL LT

int 1i;
Driver *Newdrv{():
int p45¢():
extern Driver *pdl(]; extern int *pslf};
Driver *d29;
Driver *d30;
Driver *d33;
/* end of declarations */

LA

NOCYEMNDAT

/* create signals */
326 = Newsig(); s26->signame = strsave("Y");
527 = lNewsig(); s827->signame = strsave ("X"):
828 = Newsig{(); s28->signame = strsave ("CIN");
529 = Newsig(); s29->signame = strsave ("SUM");
530 = Newsig(); s830->signame = strsave ("COUT") ;
533 = Newsig(); s33->signame = strsave ("C");
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sig _array{0]
sig_array(1]
sig array(2}
sig_array(3]
sig_array[4]
sig_array(s]

s33;

= $28;

830;
s29;
s27;
s26;

/* declaring drivers */

d29 =
d30
d33 =

Newdrv () ;
Newdrv{(); d30->sig_ptr =
Newdrv(); d33->sig ptr =

d29->sig_ptr =

s33;

s29;
s30;

529->drv_ptr =
s30->drv_ptr
s33->drv_ptr =

1

T
L]

ERPRER 4 LI

‘!
[

.
.
s
e

X‘l.

Sy S |"‘. "

dz29;
d30;
d33;

Yo s

/* sim02.c

826
527
s28

529 _

330

826

329

s30
s33

_sens_proc (0] =
833_
->sens_proc =
827~
s28~>sens_proc =
->sens_proc =
->sens_proc =
->sens_proc =
pt (1] .proc_ptr =

x/

sens_proc (0] =
sens_proc{0] =
_sens_proc{0] =
sens_proc[0] =

0;
0;
0;
0/
0;
0;
$26_sens_proc;
s27_sens_proc;
s28_sens_proc;
329 _sens_proc;
s30_sens_proc;
s33_sens_proc;
p45;

sens_proc[0] =

>sens_proc =

/* found a sens list for a process */

/*

}

\\\

s27

533

328

826 _

pdl1(0]
psl(0] =
psi(l] =
psl(2]) =
pdl{1)
psl(3]) =
psl(4])
ps1(S]
psl(6]
psl (7]
ps1(8]) =
pdl[2] =
ps1[9] =

process
pt (0] .next =
for(i=1;

pt (i) .next =
pt{1).dlist = pdl;

J‘_‘-’ q"‘-{' o J“'J' o,

_sens_proc[+ts27 sens proc[0]] =
_sens_proc(++s33_sens_proc(0]] =

_sens_proc|++s28_sens_proc[0]] =

1;
&s27_sens_proc[s27_sens_proc(0}];
1;

333_pl = &s33_sens_proc(s33_sens_proc(0]];
1;

828_pl = &328_sens_proc(s28 sens_proc(0]];
sens_proc[++326_sens_proc[0]] = 1;

826_pl = &s826_sens_proc[s26_sens_proc[0]1];
= d29;
s27->cur_val;
s26->cur_val;
s28->cur_val;
= d33;
s26->cur_val:
s28->cur_val;
s27->cur_val;
s28->cur_val;
s27->cur_val;
s26->cur_val;
d30;
533->cur_val;
table filling
épt (0]
it++)
NULL;

s27 pl =

of driver & signal list */
i<2;

pt(l].slist = psl;

p45(dlist,slist)
Driver

*dlist|[]);
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int *slist([];

-
N
R l vy
NG Transact *Newtrans(); ;'
extern TIME simtime;

()
{ f;f
BOOLEAN transport = FALSE; -
Transact *newtransl; /*wave*/ P
newtransl = Newtrans(); :{i
newtransl->future_time = simtime + 5; ot
*newtransl->val = xor(xor(*slist[0], *slist([1]), *slist([2]): ®
post_trans(dlist[0], newtransl,transport); z::
} o
{ '-i"
BOOLEAN transport = FALSE; BN
Transact *newtransl; /*wave*/ b:
newtransl = Newtrans(); °
newtransl->future time = simtime + 0;

*newtransl->val = or(or(and(*slist{3], *slist{4]), and(*slist[5],
*glist[6])), and(*slist[7], *slist([8])):
post trans(dlist([1l], newtransl,transport);

BOOLEAN transport = FALSE; e

Transact *newtransl; /*wave*/ e
newtransl = Newtrans(): v
newtransl->future time = simtime + 6; -

*newtransl->val = *slist[9];
post_trans(dlist[2]), newtransl,transport);
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Appendix E - Ring Oscillator VIIDL Description

FS
N
-

entity Ring_Oscillator is
end Ring_Oscillator;

architecture df_ impl of Ring Oscillator is
l:block
signal st_enable, bn enable : bit;

signal CNTRL, Outl, OQut2, Out3 : Bit;
begin

CNTRL <= transport ‘0’ after 30 ns,
"1’ after 50 ns,
‘0’ after 70 ns,
1" after 90 ns;

Outl <= CNTRL nand Out3 after 5 ns;
Out?2 <= not Outl after 5 ns;
Out3 <= not Out2 after 5 ns;

end block 1;
end df impl;

LY
Pl

E-1

Ca¥ o (4T, "y * oy YNty T M T o g " -,--.:,‘v,-n.
e ’.‘x ;\'5 “.'J\,"-ﬂr' Ny

- -

>,

. . - T . - N _'.".'.-. R
‘i A R R P AL AL AT A

R

S %W

v @Y.
e

AT
AN

b

l" ., 'f [ ] :;’

AN
T e
* '."-"- KA

S e
. Cate T
[ ]
.

R

’ L
NN

b e T [

et
s b
e’ e

Y
e “
St
Soat e
o

W
Spal

..
.

(AR

O]

,.
a
.

"~

g

L T
) .'- '_- '.' A
. .
a v L] «
AR

e
.
')
-

L
atef 0,0
L T
LN

e A



o ,

oo T a"a"a"r's

A N N

”l

L)
v

DS
[
.

.‘41':"-"1 '\.{"-

- “. e e e N ) e WY Te ™ - A ) e e e e - ., ..{ . ,-' '~ -~ .“\.. .
R N A N A AN, 0GR AL AR LG LA LTI AR A A 5 SO Gt

References

Aylor J.H. ei al. "VHDL -- Feature Description and Analysis" [EEE Design and Test of Computers,
3: 17-27 (April 1986).

Barbacci Mario R. and Takao Uchara. "Computer Hardware Description Languages: The Bridge
Between Software and Hardware” IEEE Computer, 10: 6-8 (June 1977).

Booch, Grady. Sofrware Engineering with Ada, 2ed. Melno Park, CA. Benjamin Cumming
Publishing Co., 1987.

Bratton, Capt Randolph M. A Production-Quality UNIX Very Iligh Speed Integrated Circuit
(VIISIC) fHardware Description Language (VIIDL) Subset Analyzer. MS Thesis
AFIT/GCS/MA/87D-1. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1987.

Carter, Lt Col Harold W. et al. 1986 Research Report AFIT VHIDL/IDB/IDBMS Research. AFIT-

ENC-TR-87-01. School of Enginecring, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, January 1987.

Chu, Yaohan. "Why Do We Need Computer Hardware Description Languages?” IEEE Computer, 7:
18-22 (December 1974).

d’Abreu, Michacl. "Gate-Level Simulation,” JEEE Design And Test, 2: 63-71 (December 19895).

Dewey, Allen and Anthony Gadient. "VHDL Motivation” IEEE Design and Test of Computers, 3:
12-16 (April 1986).

Fraucnfelder, Capt Deborah J. VIIDL Language Analyzer. MS Thesis AFIT/GCS/ENG/86D-11.

School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
December 1986.

Gilman, Alfred S. "VHDL -- The Designer Environment" [EEE Design and Test of Computers, 3:
42-47 (April 1986).

Intermetrics, Inc. Simulator Program Specification. U.S. Air Force Contract F33615-83-C-1003,
Bethesda, MD., 30 July 1984,

Intermetrics, Inc. VHIDL Language Reference Manual - Revised Version 7.2. U.S. Air Force Contract
IR-MD-045-3. Bethesda, MD., 1 August 1985.

Intermetrics, Inc. VHDL User's Manual: Volume 1 - Tutorial. U.S. Air Force Contract F33615-83-
C-1003. Bethesda, MD., 1 August 1985.

Intermetrics, Inc. VHDL User's Manual: Volume 2 - User's Reference Guide. 1.S. Air Force
Contract F33615-83-C-1003. Bcethesda, MD., 1 August 198S.

Kernighan, B.W, and Ritchie, D.M. The C Programming Language. Englewood Cliffs, Ncw Jerscy,
Prentice-Hall, Inc., 1978.

Lipovski, G.J. "Hardware Description Languages: Voices from the Tower of Babel" IEEE Computer,
10: 14-17 June 1977).

BIB-1

L%l
8 0% Wy

e ¢ N

e vt ettt e et
Ut A P R -‘: i
Lo et atama A o™




B gER B S SR 25 o

A an an as e

o alo " aly ad “ata 4t { "% " af 2 i Y, 1o gl 8o Ble AVe Rt '\ ‘o 8'aab’ . \vlr‘|!l.| g & a P ey

S
S

pd

':.'.:J.:.J’:'. 9y

Lynch, Maj William Leo. VIIDL Prototype Simulator. MS Thesis AFIT/GCS/ENG/86D-15. School

. of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
(O December 1986.

>
LSRR

t

el

",
Pressman, Roger S. Software Engineering: A Practitioner's Approach, 2ed. New York., McGraw- V‘-
Hill Book Co., 1987. N

s

Shahdad, Moe et al. "VHSIC Hardware Description Language” [IEEE Computer, 18: 94-103 5/'
(Fcbruary 1985). by Y

+
.

Su, Stephen Y.H. "A Survey of Computer Hardware Description Languages in the US.A" [EEE

e

Computer, 7: 45-49 (December 1974). :\_
Su, Stephen Y.H. "Hardware Description Language Applications: An Introduction and Prognosis” {Z','.':
IEEE Computer, 10: 10-13 (June 1977). o
»
R
[ ]

NS
¥
A

- f... [ ': _': N Av'.._“.

.
I ',
A
'y e S e
XA

X s
st

.
“r e

.
R
Q..
e A
S -
et
o .b‘
BIR-2 e
~
’
o]

IO PP N, PN e P e T e T
o AR VRY 5 SOV o) FoaSy : e

- » * . . -
....... PRI U I S S RS Y o




Vita

b
NN
Harvey H. Kodama was born on July 6, 1963 in Honolulu, Hawaii. He graduated from lolani
School, Honolulu in 1981 and received a Bachelor of Scicnce in Electrical Engineering degree from
University of Southern California, Los Angeles in May 1986, Upon graduation, he was
commissioncd a sccond licutenant in the U.S. Air Force through the ROTC program, and was
subsequently assigned to Air Force Institute of Technology, Wright-Patterson AFB, Ohio.
Permanent Address:
o
R 1438 Kaumoli St.
~:'_" Pcar! City, H1 96782
o2
e
<
>
VAR
@

g
o+ -
Y RN :
< T 5
\'J L s “
\J .
y VITA-1 4
- ~d
» .:J
M o
. N
) Sht AT NN e AN NN AN LN N N S \'.--'_\;A SR .-,-,':_.-j;.»_‘_r;‘_f?ﬂ
N " y '-..'- \ e T .'u .'l -\ P -\J\ - ..‘A i -h.&.\ AT o AW Y &'.S.Lﬁ..i-l;'n e A A A A lana nhoa Bt ol Ll ol ol sl ad




/ ¢ »
SECURITY CLASSIFICATION OF THIS PAGE .
Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

e 2 REPORT SECURITY CLASSIFICATION 1o RESTRICTIVE MARKINGS
s Doy
W' Unclagsgified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT

9%

Approved for public release;
2b. DECLASS!FICATION ' DOWNGRADING SCHEDULE bp b o ©

distribution unlimite

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

ARIT/CGE/ENG/87D-33

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Szrnoc:l of Engineering AFIT/ENG
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

rstitute of Technology

lanct-Patterson AFBR, OH 45433
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
~T Wright Aeronautical Labp AFWAL/AADE-3
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
o B ELEMENT NO NO NO ACCESSION NO
wrignt-ratterson AFB, OH 45433
11. TITLE (Include Security Classification)
A UNIX-BEASED INTERACTIVE VHDL SIMULATOR
25" PERSONAL AUTHOR(S)
$:-dams, Harvey H., 2Lt, USAF
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
.3, Thesis FROM _ Mar 87T0_Dec 87 1987 Dec 7
16. SUPPLEMENTARY NOTATION This thesls 1is submitted in partial fullfilimen:<
ot :ﬁ.»? reguirements for the Master of Science degree at Air Force
-nenitete ¢f Tecnnelogy, Wright Patterson, AFB, COH.
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP VHDT
12 05

Simul ¢tor Simulatiorn Model HARTWARE Tesc., Iana.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

: i /
ﬁﬁ,“u}a@m 3y Fud, 8T

-—

<€ DISTRIBUTION " AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
e A UNCLASSIFED UNLMITED [T SANE 45 897 LJ 01 USERS Lncliagsgseiicd
22a NAME OF ‘RES'P'ONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFF.(E SYVBOL
cosepnow, DelGroat, Madj, USAF (513) 255-60713 yNIN

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSFICAT ON OF "=15 FAGE

Iﬁ I“
Lgr:

a2 _ s
Y,

LAY

e

et tate
D

s ‘xS %

. o

Sl R

. a
L)
R

P R
[AAE R X
e
-

g Y

atea et
PPN

LN o i s e e

R '
B

.

EPRANT B

f""./. .




.
.

LR

a4

.

1,
~
L-\\‘v;-‘-‘ >
Ll llT .
AL
O,

This thesis effort investigated and implemented a

'

P

A

UNIX-based VHDL subset interactive simulator. The

LA
k]
. Iﬁ{"-"'f“v‘

c.

simulator was written in the C programming language.

‘I
5

The simulator is capable of handling many of the VHDL

iﬁ. ’
>

2

k]
.

operators, sequential assignment statements, and

x
P

{'l'

e

concurrent statements. Although the simulator is a

XA
T

"I

5

s

subset, the data structures were designed to

ALY

. ..'
X0

incorporate the features of the complete VHIL version

A
RS

7.2.

&
”

'h‘.'r

.

»

e et e e e e T e e T
"'-I‘-J'\.. J"-"'-l J‘_'- ,_4:_'3\-"-"\). f\-‘_. T"u



g .7 -
.x.m..
hf\

-

4.4 4
XX

RIS Y

LA AT "oty PRy M RARNRIY S RPN A SN A ML [T IR I SR T e oA J
f-if_hi} 1 A f\f\f\f.-f\.l\f.- . \N)-;-.“,»Jp... LA e o \'-.\--.--nv \Iﬁﬂ.(ﬁ-

R ARRE AN p .

r A, x- vJ

A AN ; a0, . s .\...«...\
AASEAANE G s T et L G Y A NN N RN
P ......._-...ME &l I-.\h.._wn\\..aau @£, 4y

L LA AN

A T WERETEY N
»\r v-‘
XA ‘

.
'y .

T S
T O N )

.
.

A

-
N D¢

s

o
= B

.
A
STy

" -
3.7

-
'.r
¥ B

PP
NI AL

.&-

\I
sl

$' ‘.‘"
o
y ¥k,

o

v, ' . L)

o~
I'
..
.’
4
4
2
1A

\



